Computational Multiphase Flow, TU Darmstadt
08 Jul, 2025
Tinh Vo, M.Sc.
Advisor: Dr.Ing. Holger Marschall
Research group leader: Computational Multiphase Flow (CMF)
Chief Product & Innovation Officer @ IANUS Simulation
Electrically driven flows
Navier-Stokes Equations
\[ \frac{\partial}{\partial t}[\rho\mathbf{v}] + \nabla \cdot \{\rho\mathbf{v}\mathbf{v}\} = -\nabla p + \nabla \cdot \left\{\mu\left[\nabla\mathbf{v} + (\nabla\mathbf{v})^{\text{T}}\right]\right\} + \mathbf{f}_b \] \[ \frac{\partial\rho}{\partial t} +\nabla\cdot (\rho\mathbf{u}_{}) = 0 \]
Species Transport &
Gauss law
\[ \frac{ \partial c_{i} }{ \partial t } + \mathbf{u} \cdot \nabla c_{i} = \nabla \cdot(D_{i}\nabla c_{i}) + \nabla \cdot [( \underbrace{ D_{i} \dfrac{ez_{i}}{kT} } _{ \text{Stokes-Einstein relation} }\nabla \Psi)c_{i} ] \] \[ \nabla^2 \Psi _{E} =\frac{-\rho_E}{\epsilon\epsilon_{0}} = \frac{-F \sum_{i} z_{i} c_{i}}{ \epsilon\epsilon_{0}} \]
Described leading order solutions of pore charging and electric potential field of a close ended pore,
replicating transmission line model solutions
Governing equation discrepancy
Does not contain convective/advective term
➡ Increase accuracy near walls without larger mesh
Part of the boundary condition of a ionic system: \[ D_{i} \partial_{n} c_{i} + c_{i} \mu _{i} \partial_{n } \Psi =0 \]
Analytical solution: \[ c_{i|b} = c_{i|P}e^{-\mu _{i}/D_{i} \left( \Psi _{|b} -\Psi _{|P} \right) } \]
Sorption source term: \[ D_{i} \partial_{n} c_{i} + c_{i} \mu _{i} \partial_{n } \Psi = -s_i \]
Solution treatment:
unknown
Change the construction of the electromigration flux
\[ \frac{ \partial c_{i} }{ \partial t } + \mathbf{u} \cdot \nabla c_{i} = \underbrace{ \nabla \cdot(D_{i}\nabla c_{i}) + \nabla \cdot (D_{i} \dfrac{ez_{i}}{kT}\nabla \Psi c_{i}) } _{ \nabla \cdot \mathbf{J_{i}} } \] \[ \frac{\partial c_{i}}{\partial t} + \nabla \cdot ( \underbrace{c_{i}\color{red}{\mathbf{v}_{}} } _\text{advection}+ \mathbf{J_{i}}) =0 \]
Existing formulation:
\[ \mathbf{J}_{i} = \underbrace{D_{i}\nabla c_{i} } _\text{diffusion} + \underbrace{\left[ \frac{D_{e,i} z_{i}e}{k_{b} T} \right]c_{i}(-\nabla \Psi )} _\text{electromigration} \]
Improved Nernst-Planck Proposal 1
Barycentric velocity:
\[ \mathbf{v } = \frac{1}{\rho} \sum_{i} \rho_{i} \mathcal{v }_{i} \]
Flux:
\[ \begin{align} \mathbf{J}_{i} = -\sum _{j =1} ^{N-1} M_{i j} &\left( \nabla \frac{\mu _{j} -\mu _{N}}{T} n_{i} \right. \\ & \quad \left. + \frac{1}{T} \left( \frac{z_{j}}{m_{j}} - \frac{z_{N}}{m_{N}} \right)\nabla \Psi \right) \\ \end{align} \]
\[ \sum_{\alpha{}}^{N} \mathbf{J}_{\alpha{}} =0 \]
Grid-based Mesoscale Simulations
Nanoscale simulations
Represent molecular ion crowding
Tinh Vo, TRANSIEVES Seminar